Calculus

More Practice

In the previous section, we learned useful formulae for solving derivatives. They are called the

Product Rule: df(x)g(x)dx=f(x)g(x)+g(x)f(x)\displaystyle{\frac{df(x)g(x)}{dx} = f'(x)g(x)+g'(x)f(x)}

and the

Quotient Rule: df(x)g(x)dx=f(x)g(x)g(x)f(x)(g(x))2\displaystyle{\frac{d \frac{f(x)}{g(x)}}{dx} = \frac{f'(x)g(x)-g'(x)f(x)}{(g(x))^2}}

Now it's time to put these formulas to use.

Here are some practice problems to use these formulas.

dtanxdx=\displaystyle{\frac{d \tan{x}}{dx} = }

Hint 1

What's another way to write tanx\tan x

Hint 2

Which rule should we use, product or quotient?

Solution 1

Use the division rule to solve the derivative:

tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}
f(x)sinxf(x) \rightarrow \sin x
f(x)cosxf'(x) \rightarrow \cos x
g(x)cosxg(x) \rightarrow \cos x
g(x)sinxg'(x) \rightarrow - \sin x
cosxcosx+sinxsinxcos2x=cos2x+sin2xcos2x\frac{\cos x\cdot\cos x+\sin x\cdot\sin x}{\cos^2x}=\frac{\cos^2x+\sin^2x}{\cos^2x}

Use the pythagorean identity:

=1cos2x=sec2x=\frac{1}{\cos^2 x} = \sec^2x

df(x)exdx=ex\displaystyle{\frac{d f(x)e^x}{dx}}= e^x \cdot

Hint 1

Which rule should we use? Quotient, or product?

Solution 1

Use the product rule to solve the derivative:

exg(x)e^x \rightarrow g(x)
f(x)f(x)f(x)\rightarrow f(x)
f(x)ex+f(x)exf\left(x\right)e^x+f'\left(x\right)e^x

Distribute:

=ex[f(x)+f(x)]=\boxed{e^x\left[f\left(x\right)+f'\left(x\right)\right]}

dsecxdx=\displaystyle{\frac{d \sec x}{dx}}=

Hint 1
secx=1cosx\sec x = \frac{1}{\cos x}
Solution 1

Use the Quotient Rule to solve the derivative:

secx=1cosx\sec x = \frac{1}{\cos x}
f(x)1f(x) \rightarrow 1
f(x)0f'(x) \rightarrow 0
g(x)cosxg(x) \rightarrow \cos x
g(x)sinxg'(x) \rightarrow - \sin x
(0)(cosx)(sinx)(1)cos2x=sinxcos2x=tanxsecx\frac{\left(0\right)\left(\cos x\right)-\left(-\sin x\right)\left(1\right)}{\cos^2x}=\frac{\sin x}{\cos^2x}=\boxed{\tan x\sec x}

dcscxdx=\displaystyle{\frac{d\csc x}{dx}}=

Hint 1
cscx=1sinx\csc x = \frac{1}{\sin x}
Solution 1

Use the Quotient Rule to solve the derivative:

secx=1sinx\sec x = \frac{1}{\sin x}
f(x)1f(x) \rightarrow 1
f(x)0f'(x) \rightarrow 0
g(x)sinxg(x) \rightarrow \sin x
g(x)cosxg'(x) \rightarrow \cos x
(0)(sinx)(cosx)(1)sin2x=cosxsin2x=cscxcotx\frac{\left(0\right)\left(\sin x\right)-\left(\cos x\right)\left(1\right)}{\sin^2x}=-\frac{\cos x}{\sin^2x}=\boxed{-\csc x\cot x}

© 2022 YMath.io owned and operated by Saumya Singhal